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Binary code similarity analysis (BCSA) is a crucial research area in many fields such as cybersecurity. Specifi-
cally, function-level diffing tools are the most widely used in BCSA: they perform function matching one by
one for evaluating the similarity between binary programs. However, such methods need a high time com-
plexity, making them unscalable in large-scale scenarios (e.g., 1/𝑛-to-𝑛 search). Towards effective and efficient
program-level BCSA, we propose KEENHash, a novel hashing approach that hashes binaries into program-level
representations through large language model (LLM)-generated function embeddings. KEENHash condenses a
binary into one compact and fixed-length program embedding using K-Means and Feature Hashing, allowing
us to do effective and efficient large-scale program-level BCSA, surpassing the previous state-of-the-art
methods. The experimental results show that KEENHash is at least 215 times faster than the state-of-the-art
function matching tools while maintaining effectiveness. Furthermore, in a large-scale scenario with 5.3 billion
similarity evaluations, KEENHash takes only 395.83 seconds while these tools will cost at least 56 days. We
also evaluate KEENHash on the program clone search of large-scale BCSA across extensive datasets in 202,305
binaries. Compared with 4 state-of-the-art methods, KEENHash outperforms all of them by at least 23.16%,
and displays remarkable superiority over them in the large-scale BCSA security scenario of malware detection.
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1 Introduction
Binary code similarity analysis (BCSA) is a crucial research area in the fields of cybersecurity,
software engineering, and reverse engineering [16, 26, 28, 44, 49, 54, 71, 94]. It involves the com-
parison of binary code (e.g., program and function) to identify similarities and differences among
them, which is applied to a wide range of applications, including code clone search [16, 26, 86],
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malware analysis [16, 25, 28, 44, 46, 82], vulnerability detection [32, 85, 92], software composition
analysis [49, 50, 96], and so forth. Among these analyses, program-level BCSA [42] stands out
as a powerful technique that can analyze and compare similarities between binaries (i.e., binary
programs) [16, 44, 82] which are larger and more complex objects than functions (i.e., function-level
BCSA, evaluates the similarity between binary functions). This type of analysis includes 1-to-1
and 1/𝑛-to-𝑛 similarity comparisons of binaries. Particularly, in the vital large-scale scenarios
(i.e., 1/𝑛-to-𝑛), such as program clone search [16, 44], malware detection [25, 82], and threat intel-
ligence [20, 57, 59, 68, 82], it must be both accurate and efficient for evaluating huge amounts of
similarities among binaries.
Unfortunately, in spite of the significance on program-level BCSA, none of the previous works

could achieve satisfying results on the large-scale 1/𝑛-to-𝑛 comparisons. Specifically, most previous
works on BCSA [16, 26, 28, 83, 86] focus on function-level similarity: they generate one embedding
for each function in a binary, and iteratively compare these embeddings with embeddings from
another binary, to determine the (similar) function-matched proportion (i.e., similarity) between two
binaries. Limitation.1: Such a matching approach has an unscalable 𝑂 (𝑛𝑚3) time complexity (𝑛 is
the number of comparisons among binaries and𝑚 is the number of functions to one binary) [56],
making it impossible to be applied to large-scale BCSA, evenwith faster heuristic strategy [19, 28, 57]
(Sec. 4.3). Limitation.2: PSSO [16] is the only recent work focusing on large-scale program-level
BCSA. However, it only uses simple features (e.g., call graph and edge counts of control flow
graphs) for generating program-level embedding without considering the rich semantics in binary
functions, leading to poor performance in large-scale experiments (Sec. 4.4 to 4.7).
To fill the aforementioned gaps, we propose KEENHash, a novel hashing approach to hash

binaries into fixed-length representations for effective and efficient BCSA. To achieve this goal,
KEENHash condenses a binary into one compact and fixed-length program embedding (e.g., 8KB).
It leverages K-Means and Feature Hashing technique [88] to classify and represent decompiled
pseudo functions (with function embeddings) into a bit-vector for approximating function match-
ing, thereby allowing us to do large-scale (1-to-𝑛 and 𝑛-to-𝑛) program-level BCSA that previous
function-level methods fail to do. Specifically, KEENHash involves three stages to hash a binary:
Function Embedding Generation (Sec. 3.3), Program Embedding Generation (Sec. 3.4), and Sim-
ilarity Evaluation (Sec. 3.5). In the first stage, we train a large language model (LLM) to encode
the decompiled pseudocode of each function (i.e., pseudo function) into corresponding embedding,
in which the rich semantics of pseudo functions are extracted and maintained. Taking the idea
of classifying similar functions into the same class and thus representing function matching, in
the second stage, we cluster extensive source functions using K-Means (an effective clustering
algorithm to generate labels), and then feed the label information (derived from K-Means through
classification) of the pseudo functions into the Feature Hashing module to produce the compact
vector (KEENHash-stru, Sec. 3.4.1) that can represent the whole binary. By applying such K-Means
and Feature Hashing techniques, an original binary with the size of MBs of pseudo function embed-
dings can be condensed into only 8KB, significantly accelerating the (function matching) process
of large-scale program-level BCSA. Furthermore, massive code reuse (e.g., > 70%), a widespread
practice in software development [50], can misleadingly increase the similarity between non-same-
class binaries (Sec. 4.4) and weaken indirectly the significance of binaries’ unique feature parts. We
introduce KEENHash-sem (Sec. 3.4.2) from the perspective of program semantics with the weighted
average of function embeddings. Comparing these two approaches, KEENHash-stru is better in
code obfuscation scenarios (Sec. 4.5), while KEENHash-sem is more effective in massive code reuse
ones (Sec. 4.4). Finally, in the third stage, we use the compact program embedding (KEENHash-stru
or sem) representing the information of the whole binary to perform the large-scale BCSA.
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Our experiments illustrate that KEENHash can maintain an effective performance on function
matching while faster than SigmaDiff [34] and BinDiffMatch [19, 57], the two state-of-the-art binary
diffing tools for function matching with heuristic strategy, by 1,254 and 215 times on the average
of each matching between two binaries (Sec. 4.3). Furthermore, in a large-scale scenario with 5.3
billion similarity evaluations among binaries (Sec. 4.6), a typical workload within one day [25, 80, 82],
KEENHash takes at most only 395.83 seconds, while SigmaDiff and BinDiffMatch will cost 323
and 56 days, which is unscalable. Additionally, on program clone search (a representative task for
large-scale BCSA), KEENHash shows effective performance on a total of 202,305 Linux/Windows
binaries with real-world cases across various compile environments including optimization levels,
compilers, architectures, and obfuscations, significantly outperforming all other state-of-the-art
BCSA methods including PSSO (Sec. 4.4 to 4.6) by at least 23.16% (Sec. 4.6). Moreover, KEENHash
displays remarkable superiority over other methods in the large-scale BCSA security scenario of
malware detection (Sec. 4.7).

To summarize, our paper makes three contributions:
• We propose KEENHash, based on LLM-generated function embeddings, taking two perspectives
of function matching and program semantics to hash any binary to a compact and fixed-length
representation for effective and efficient large-scale program-level BCSA;
•We evaluate KEENHash on function matching, against the state-of-the-art tools SigmaDiff and
BinDiffMatch. KEENHash is able to maintain an effective performance and demonstrates a signifi-
cant speed advantage, being 1,254 and 215 times faster (Sec. 4.3). In a large-scale scenario with 5.3
billion similarity evaluations, it takes at most 395.83 seconds while SigmaDiff and BinDiffMatch
will cost 323 and 56 days (Sec. 4.3 and 4.6), respectively;
• We evaluate KEENHash on program clone search with 5 large-scale datasets in a total of 202,305
Linux/Windows binaries. Experimental results show that KEENHash outperforms all other state-
of-the-art BCSA methods including PSSO by at least 23.16% (Sec. 4.4 - 4.6), and displays remarkable
superiority over them in the large-scale security scenario of malware detection (Sec. 4.7).
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2 Preliminary
2.1 Problem Definition
Program-level BCSA is a task to evaluate the similarity between two binary programs. Given two
binaries 𝑞 and 𝑟 , the similarity evaluation process is presented as follows:
Definition 1: (Similarity Evaluation). For 𝑞 and 𝑟 , the similarity evaluation process measures
the similarity score between them, which is formulated as follows:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝐹 (𝐸𝑛𝑐 (𝑞), 𝐸𝑛𝑐 (𝑟 )) (1)

Where function 𝐸𝑛𝑐 encodes a program 𝑞 or 𝑟 based on their information to a representation; and,
function 𝐹 further measures their similarity score. The larger the similarity score, the more similar
the two programs 𝑞 and 𝑟 are. This definition also holds between functions.
In this study, we focus on large-scale program-level BCSA. To evaluate the performance of

methods, we utilize the program clone search [16] as the evaluation task. Notably, program clone
search is also one of the critical large-scale scenarios in threat intelligence and BCSA (e.g., finding
similar binaries to unknown malware for better understanding) [82].
Definition 2: (Same Class Program). Programs in the same class are clones of each other. A clone
𝑐 of a program 𝑝 is defined as that 𝑐 is compiled from the same or different code version source
code to 𝑝 with various compilation environments. For example, 𝑐 compiled from source code 𝑠
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using GCC v13.2 with O0 is a clone of 𝑝 compiled from 𝑠 using GCC v10.5 with O3; and, 𝑐 compiled
from 𝑠 is a clone of 𝑝 compiled from 𝑠′ where 𝑠 is another version to 𝑠′ (e.g., malware variants).
Definition 3: (Program Clone Search). Given an unknown query binary 𝑞 ∈ 𝑄 , a query program
dataset 𝑄 , and a program repository dataset 𝑅 containing a large amount of unknown or known
binaries 𝑟 , the task of program clone search is to input 𝑞 and retrieve the most Top-𝑘 similar binaries
{𝑟1, 𝑟2, ..., 𝑟𝑘 |𝑟𝑖 ∈ 𝑅} from 𝑅, ranked by their similarity scores. The more binaries of the same class
to 𝑞 are returned and the higher they rank among the Top-𝑘 retrieved binaries, the better the
performance of program-level BCSA methods.

The clone search procedure is presented as follows:
❶ Repository Preprocessing. Before retrieving Top-𝑘 similar programs, the repository 𝑅 needs
to be built first. Additionally, for each program 𝑟 ∈ 𝑅, the program-level BCSA method 𝐸𝑛𝑐 (𝑟 ) to
get its representation, such as embedding, for subsequent similarity comparisons in retrieving;
❷ Query Preprocessing. Given a query program 𝑞, like the first step ❶, the program-level BCSA
method 𝐸𝑛𝑐 (𝑞) to get its representation;
❸ Retrieving. We send 𝑞 to the similarity search system (e.g., FAISS [27] and Milvus [41, 87])
built based on 𝑅 to retrieve the most Top-𝑘 similar programs from 𝑅 by leveraging program
representations with function 𝐹 . The search procedure has many indexes [87] such as FLAT, HNSW,
IVF_FLAT, and so forth. In this study, to accurately evaluate the performance of program-level
BCSA methods, we use the FLAT index by default through brute force search.

2.2 Motivation
In this section, we introduce the motivation behind the design of KEENHash for large-scale
program-level BCSA. Binary diffing [28] is a widely used method to identify differences between
two binaries, enabling various analyses. Where, function-level binary diffing (i.e., similar function
matching) [7, 52, 57] is popular since functions represent sufficiently detailed information about
the decomposition of the program functionality. Therefore, using the results of (similar) function
matching proportion as a measure can effectively capture the structural similarity between binaries.
However, the approach introduced in Sec. 1 costs a𝑂 (𝑛𝑚3) time complexity for 𝑛 similarity evalua-
tions. Even with heuristic strategies, scalability remains unsatisfiable on large-scale BCSA scenarios
(e.g., BinDiffMatch takes 56 days to evaluate 5.3 billion similarities. See Sec. 4.3). Nevertheless,
considering that function matching is essentially a form of classification, grouping similar functions
into the same class which is dynamically expanding. Thus, as long as a precise and comprehensive
classifier is used to classify functions, the matching is equivalent to and transformed into classifica-
tion. In addition, by encoding classified results as positions (e.g., Feature Hashing [88]) in a vector,
𝑛 similarity comparisons only require 𝑂 (𝑛) ≪ 𝑂 (𝑛𝑚3) time complexity where the dimension
(length) of the vector is fixed. With this property, we can hash any binary, with a varying number
of functions, to a compact and fixed-length vector, with hardware acceleration, to support fast
comparison in large-scale scenarios. We propose KEENHash-stru based on this insight (Sec. 3.4.1).
Moreover, considering that massive code reuse (a widespread practice) can misleadingly increase
the similarity between two non-same-class binaries (Sec. 1 and 3.4.2), we introduce KEENHash-sem
from the perspective of program semantics in Sec. 3.4.2 to mitigate this issue in large-scale BCSA.

2.3 Assumption of Processed Binary
In this section, we outline the assumption of the processed binary for KEENHash. Binary pack-
ing [25] is the technique for compressing original binaries to reduce their size and obfuscate their
contents. Packed binaries are decompressed in memory during runtime before the original content
in binaries is executed, and are difficult to accurately decompress statically [66]. Directly using
decompilers, like Ghidra [7] or IDA Pro [73], may not identify and analyze all functions within
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Fig. 1. Workflow of KEENHash.

packed binaries. KEENHash hashes programs based on decompiled results through Ghidra (see
Sec. 3.2) which may be affected by packing techniques. Additionally, how to unpack any packed
binary goes beyond the scope of our paper. Thus, to avoid biases, in this study, we divide the range
of binaries that KEENHash can process into programs without packing, or packed programs can
be unpacked easily (i.e., UPX [79]).

3 Methodology
In this section, we introduce the workflow of KEENHash for large-scale program-level BCSA.

3.1 Overview
As shown in Fig. 1, the workflow of KEENHash includes four phases: ❶ function extraction (Sec.
3.2), ❷ function embedding generation (Sec. 3.3), ❸ program embedding generation (Sec. 3.4), and
❹ similarity evaluation (Sec. 3.5). Specifically, to hash a given binary to a multi-vector for similarity
analysis, ❶ KEENHash extracts the C-like pseudocode functions in the binary through Ghidra [7].
Then, ❷ KEENHash leverages a large language model (LLM) to generate the embeddings of these
pseudo functions. Next, after obtaining the pseudo function embeddings, ❸ KEENHash leverages
the function matching-based structural feature (KEENHash-stru) as well as the function-intrinsic
semantic feature (KEENHash-sem) to transform pseudo function embeddings into compact and
fixed-length structural and semantic program embeddings, respectively, forming a multi-vector.
Where the second is proposed by considering huge cose reuse cases (see Sec. 4.4). Eventually,
❹ KEENHash leverages the corresponding and respective similarity evaluation metrics for the
generated structural and semantic embedding to compare the similarities of the given binary with
other program embeddings, to support various large-scale program-level BCSA tasks.

3.2 Function Extraction
The initial step of KEENHash involves extracting C-like pseudocode functions (pseudo functions)
from binaries where these pseudo functions are translated from corresponding binary functions in
the binaries through Ghidra [7]. The C-like pseudocode, rather than others (e.g., assembly code, byte
code, and so forth) [26, 83, 86], shields the details of assembly instructions from various architectures
(i.e., unify to the same code format) and is close to the code in high-level languages such as C/C++
(i.e., one model can easily encode both source and pseudo functions in the same tokenization).
Moreover, to train the subsequent LLM (function embedding model) for generating function
embeddings, source functions from open-sourced C/C++ projects are extracted, with their pseudo
functions compiled through various compile environments. Massive C/C++ source functions are
also extracted for KEENHash-stru (see Sec. 3.4.1) when generating program embeddings. Contrary
to the intuitive imagination of KEENHash only hashing binaries, we do not adopt a binary-to-binary
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training method to LLM like previous works [26, 86] (i.e., with only pseudo/binary functions), but
instead use a source-to-binary approach (i.e., with both source and pseudo functions). The reason
is three-fold: (1) the language of C-like pseudocode is close to the languages in source code from
C/C++ projects; (2) a source function acts as an anchor to many corresponding binary functions
compiled from different compile environments; and (3) it is essential to support generating massive
source function embeddings instead of pseudo ones (decompilation for binaries is time and resource-
consuming) for KEENHash-stru (see Sec. 3.4.1). Additionally, we only choose C/C++ open-sourced
projects for fast construction of the automatic compilation pipeline inspired by jTrans [86], due to
compilation compatibility reasons. The specific function extraction process is listed as follows:

3.2.1 Training Phase. KEENHash performs function extraction and ground-truth matching.
• Source Function Extraction. The process extracts C/C++ source functions from open-sourced
C/C++ projects, such as GitHub repositories [35]. For each project, we collect all the C/C++ source
code files across all versions through git tags. All source code files are deduplicated with the
sha256 hash values. We also leverage tree-sitter [78] to parse these files and extract all unique source
functions (through the sha256 hash values of their content without comments and whitespaces)
with line numbers in files from them. The mapping relationships among projects, project versions,
source code files, line numbers, and source functions are preserved during the extraction.
• Pseudo Function Extraction. For a given binary, we leverage Ghidra [7] to decompile it and
extract all its binary functions that are translated to the language of C-like pseudocode (i.e., pseudo
functions). Moreover, the relative virtual addresses (rva) to the binary functions are also extracted.
• Source and Pseudo Function Matching. Given a C/C++ project and corresponding compiled
(unstripped) binaries through one specific compile environment (e.g., <GCC v13.2, O3, x86, 64-bit>),
the matching process matches the source functions with their pseudo ones. A matched pair of the
source and pseudo functions is an invertible mapping of the source one and its compiled binary
one. Specifically, we compile the project and generate the debugging information (DWARF [45]).
Then, we perform pseudo function extraction to extract the mapping between pseudo functions
and their rva. Meanwhile, we parse the debugging information to extract the mapping between rva
and corresponding source files with line numbers. After further performing the source function
extraction to the project and getting the third mapping, we can merge these mappings to get the
1-to-𝑛 matching from the source functions to the pseudo ones. Moreover, we use sha256 hashed
values to deduplicate pseudo functions for each source. By performing matching and deduplication
on extensive C/C++ projects and binaries, we get a Corpus dataset C and a Query dataset Q where
they contain matched and unique source functions, and matched pseudo functions, respectively.
The matching between C and Q is a 1-to-𝑛 mapping across binaries in one project, in different
projects, and through various compile environments. C and Q are further used for training the
subsequent function embedding model.

3.2.2 Hashing Phase. Only binaries are processed to extract pseudo functions. Specifically, given a
binary, we leverage Ghidra to decompile it and extract its pseudo functions, preparing to generate
their function embeddings.

3.3 Function Embedding Generation
The foundation of KEENHash is the function embedding model for generating function embeddings
to both source and pseudo functions (Sec. 3.2) for subsequent function-aware program embedding
generation. The objective of the model is to generate function representations (embeddings) such
that similar source and pseudo functions are gathered naturally in the vector (embedding) space.
Conversely, dissimilar functions remain distanced from each other. To place the representations
of both kinds of functions in the same space, we train our model based on the pairs of matched
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source and pseudo ones extracted from Sec. 3.2.1. While the grammar of source and pseudo code is
similar [7], significant differences can still exist in the code due to various language features (e.g.,
function inlining [48]), compile environments (e.g., optimization level [26]), and decompilation
(e.g., accessing data members and functions [7]), resulting in different formats. Recent work [33, 69]
shows that existing LLMs, trained on code in various languages, can provide the capacity to
understand and discriminate the intricate details and similarities of code syntax and semantics
across different formats [9, 58, 97]. Therefore, we leverage LLM to overcome this issue and generate
function embeddings. Instead of training a model from scratch, we use a pre-trained one for the
transfer of knowledge [40, 69] and further fine-tune it on the pairs of matched functions through
contrastive learning [72, 98]. Through this approach, we enable the LLM to draw similar functions
closer together while pushing dissimilar ones farther apart. Specifically, we leverage Pythia-410M
(contain 410M parameters) [17, 31], a transformer-based language model widely adopted by the
research community, as the initialized base model for further fine-tuning. Furthermore, we highlight
that our function embedding model differs from existing state-of-the-art ones, such as jTrans [86]
and CLAP [83], in its ability to map both source and pseudo (binary) functions into the same space,
while theirs only support binary ones. Our model is also more effective than theirs, focusing on
binary function embeddings and correspondingly generated program embeddings (see Appendix E).

3.3.1 Training Phase. In the training phase, we further fine-tune Pythia-410M in a supervised
manner on the pairs of matched functions through contrastive learning. Contrastive learning [24]
is a technique, engaging in-batch negative samples, for a model to learn an embedding space where
similar sample pairs stay close to each other while dissimilar ones are far apart, leading to better
performance on discriminating functions [76]. In particular, we leverage Contrastive Language-
Image Pre-training (CLIP) [72, 98] for fine-tuning our model due to the different code formats of
source and pseudo functions. Specifically, ❶ we first perform tokenization on all source and pseudo
functions in the training dataset that converts them into sequences of tokens. ❷ In the training
epochs, batches are generated randomly and dynamically for more effective learning [98]. Thus, to
generate one batch, we randomly sample 𝑁 pairs of matched similar source and pseudo functions
from C and Q with the near-deduplication procedure used in StarCoder [58] for more diverse
training data, where functions between pairs are considered dissimilar. We pass the tokenized
sequences of the 2𝑁 functions to Pythia-410M and obtain their embeddings by extracting the
𝑛-dimensional output of the last hidden layer of the model where 𝑛 = 1024 (each dimension in
float32, i.e., 4 bytes) [31]. Here, we denote e𝑠𝑖 and e𝑝

𝑗
∈ R𝑛 as the embeddings of the 𝑖𝑡ℎ and 𝑗𝑡ℎ

source and pseudo functions, respectively. Furthermore, e𝑠𝑖 and e𝑝
𝑗
are considered a match (i.e.,

positive pair) if 𝑖 is equal to 𝑗 ; otherwise, they are deemed unmatched (i.e., negative pair). ❸ In each
batch, CLIP evaluates the 𝑁 × 𝑁 cosine similarity matrix [98] between all the pairs of functions
based on their embeddings. ❹ The training objective is to generate function embeddings in such
a way that the similarity values of 𝑁 positive pairs are maximized, while the similarity values of
the 𝑁 × (𝑁 − 1) negative pairs are minimized. Therefore, we apply the softmax loss for language
image pre-training [98], across source and pseudo functions, to the previously generated cosine
similarity matrix. The specific loss function is defined as follows:

L = − 1
2𝑁

𝑁−1∑︁
𝑖=0

(

source→pseudo softmax︷              ︸︸              ︷
log 𝑒𝑡x𝑖 ·y𝑖∑𝑁−1

𝑗=0 𝑒𝑡x𝑖 ·y𝑗
+

pseudo→source softmax︷              ︸︸              ︷
log 𝑒𝑡x𝑖 ·y𝑖∑𝑁−1

𝑗=0 𝑒𝑡x𝑗 ·y𝑖
) (2)

Where x𝑖 = e𝑠𝑖 /∥e𝑠𝑖 ∥2 and y𝑗 = e𝑝
𝑗
/∥e𝑝

𝑗
∥2; 𝑡 is a freely learnable parameter for scaling logits [72].
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3.3.2 Hashing Phase. Given a bunch of pseudo functions extracted from a binary, KEENHash
leverages the function embedding model to generate corresponding function embeddings, for
subsequent program embedding generation.

3.4 Program Embedding Generation
Functions are self-contained code modules designed to perform specific tasks, and their combination
constitutes the functionality and representation of a program. The core of KEENHash lies in
integrating the functions in a binary to generate a compact and fixed-length embedding that
represents the binary, for large-scale BCSA. Therefore, we approach it from two perspectives,
respectively: ❶ program structure (i.e., the function matching between binaries) and ❷ program
semantics (i.e., amplification of unique feature semantics between binaries when comparison).
As mentioned in Sec. 2.2, for ❶, the extent to which functions match between two binaries can
serve as a metric for assessing their similarity. However, the time complexity of direct matching is
prohibitively high (Sec. 2.2). Thus, we transform the function matching problem into a classification
one, to achieve matching at a much lower time complexity. As for ❷, due to the widespread practice
of massive code reuse [49, 50, 63, 89], it often leads to the structure (e.g., function matching, call
graph, and so forth) of two binaries appearing very similar. This results in difficulty in distinguishing
binaries (in large-scale scenarios) in the same or different classes but with similar structures (see
example in Sec. 4.4) since the significance of the unique feature parts is indirectly weakened.
Therefore, we explore the integration of function embeddings by capturing the semantic differences
and maximizing the unique features among functions to effectively reflect the overall program
semantics. We denote the first method as KEENHash-stru (Sec. 3.4.1) and the second as KEENHash-
sem (Sec. 3.4.2). Together, their respective program embeddings combine into multi-vectors and
can be selectively utilized based on specific conditions. Moreover, we highlight that both methods
should be in an unsupervised manner due to the prohibitive costs of crafting large-scale and diverse
labeled training datasets of binaries for real-world scenarios and generalization [16, 28].

3.4.1 Structure-based Embedding Generation. The insight of KEENHash-stru is performing function
classification for function matching based on the pseudo functions to the given binary. Therefore, it
is crucial to find a classifier that can efficiently classify a function such that similar functions are in
the same class and dissimilar ones are separated. However, it is challenging to craft a high-quality
training dataset for training a multi-classifier in a supervised manner due to the two aspects of
labeling functions and determining the number of labels. To overcome this issue, we regard the
classification as the 1-NN search [27] by our function embedding model. Our model unifies source
and pseudo functions within the same vector space, enabling us to perform the 1-NN search on a
vast training dataset crafted based on source functions to classify pseudo ones. The extraction of
source functions is achieved from open-sourced C/C++ projects, eliminating the need for reverse
engineering of binaries. This approach allows for the easy expansion of the 1-NN training dataset,
encompassing a wide variety of function semantics. Additionally, the model is capable of grouping
similar functions together, while distinctly separating dissimilar ones, resulting in the massive
collection of source functions forming clustered distributions directly. Therefore, by employing the
suitable clustering algorithm, we can automatically extract function classes and label functions for
the 1-NN dataset. Moreover, to avoid the high time cost of 1-NN search, centroid-based clustering
is preferred where each cluster is represented by a centroid instead of all inner-cluster data points.
Clustering. Specifically, we first perform source function extraction (see 3.2.1) on massive projects
to extract a large collection of distinct C/C++ source functions. Next, our trained function embedding
model is applied to these functions to generate function embeddings. These embeddings are used as
the training dataset for the subsequent centroid-based clustering. Here, we utilize K-Means [15], an
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effective unsupervised algorithm scalable on large-scale datasets, to perform clustering. Formally,
the K-Means clustering algorithm partitions the training dataset of the source functions into 𝑛
clusters 𝑆 = {𝑆0, 𝑆1, ..., 𝑆𝑛−1} by maximizing the cosine similarity between functions in the same
cluster. 𝑐𝑖 ∈ 𝐶 is the centroid and representation for the cluster of 𝑆𝑖 , labeled with 𝑖 . 𝐶 is the set of
all centroids, in the size of 𝑛 ≪ the number of source functions that serves as the training dataset
of 1-NN. While training the K-Means model is expensive, it is a one-time and offline process in a
period that does not impact the efficiency of KEENHash-stru. In addition, the cluster size of 𝑛 to K-
Means is a critical hyperparameter that can affect the performance of the subsequent classification
task. Recall that our objective is to transform the matching problem into the classification one,
and therefore the performance of the matching task is the evaluation metric for finding the most
effective 𝑛 to train the K-Means model. To this end, we set 𝑛 to 2𝑘 where 𝑘 ∈ N+ to appropriately
reduce its search range. We systematically study a suitable 𝑛 in the function matching task between
binaries in the same class in Sec. 4.3.
Generation. After obtaining the 𝑛 centroids, we take them as the training dataset of 1-NN and
perform the 1-NN search to all pseudo functions of the binary for generating the program embedding.
Formally, we denote the collection of pseudo functions with 𝑞 numbers as 𝑃 = {𝑃0, 𝑃1, ..., 𝑃𝑞−1}
where 𝑃𝑖 is the 𝑖𝑡ℎ pseudo function. Then after the search, we get the corresponding collection
of retrieved Top-1 most similar centroids 𝑅 = {𝑐0𝑖 , 𝑐1𝑗 , ..., 𝑐

𝑞−1
𝑘

} with cosine similarity where 𝑐𝑖𝑗
represents that 𝑃𝑖 retrieve the 𝑐 𝑗 ∈ 𝐶 centroid. Therefore, taking the labels 𝐿 = {𝑖, 𝑗, ..., 𝑘} of 𝑅,
the binary is transformed into a collection of labels, and for any two binaries, their respective
pseudo functions with the same labels are considered matches. Additionally, to further enhance
the efficiency of similarity evaluation with bitwise operations, we attempt to transform 𝐿 of the
binary into a fixed-length bit-vector v in dimension 𝑛: v = [𝑣0, 𝑣1, ..., 𝑣𝑛−1] where 𝑣𝑖 = 1 if 𝑖 ∈ 𝐿;
otherwise, 𝑣𝑖 = 0. This transformation captures the presence of each centroid in the result of
the 1-NN search, and multiple identical labels are consolidated as a single one since the pseudo
functions are classified into the same class, potentially presenting similar semantics. Moreover,
each element in v is represented as a single bit to minimize space requirements.
However, the dimension 𝑛 of v can be very high (e.g., 𝑛 = 222 in 512KB), and the number of

pseudo functions in the binary can be extremely smaller. Directly using the dimension 𝑛 can
consume a substantial amount of space and is computationally prohibitive [44]. Furthermore, the
size of 𝑛 for K-Means may not be reducible due to the consideration regarding the performance
of function matching (Sec. 4.3). To address this issue, we employ Feature Hashing [88], which
hashes the high-dimensional input vector v ∈ {0, 1}𝑛 into a lower one {0, 1}𝑚 with the mapping
function 𝜙 : V → {0, 1}𝑚 where V is the domain of all possible v. Since𝑚 ≪ 𝑛, Feature Hashing
reduces v to a more compact representation, allowing for significant savings in space and computa-
tional resources. Moreover, previous research demonstrates that Feature Hashing approximately
preserves the original similarity (i.e., function matching results) between hashed vectors with a
high probability [46], and the penalty incurred from using it only grows logarithmically with the
number of samples compared [88].
In particular, according to v, we leverage a uniform hash function 𝐻 : L → [0,𝑚) to hash a

label 𝑖 ∈ L ∧ 𝑣𝑖 = 1 (L is the domain of all possible labels, i.e., all clustered centroids) to the new
position 𝑗 ∈ [0,𝑚) of hashed bit-vector v′ = [𝑣 ′0, 𝑣 ′1, ..., 𝑣 ′𝑚−1] in dimension𝑚. Furthermore, a sign
hash function 𝜁 : L → {−1, +1} is applied to the label 𝑖 to get its signed value for leading to an
unbiased estimate [88]. In case of collision where multiple labels map to the same position 𝑗 , the
sum of their signed values, followed with an indicator function 1𝑥≠0 (𝑥) for preserving bitwise
operations and space requirements, is taken as the value for 𝑣 ′𝑗 ∈ {0, 1}. Formally, for a given v, the
𝜙 to get v′ is defined as follows:
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𝑣 ′𝑗 = 𝜙 𝑗 (v) = 1𝑥≠0 (0 +
∑︁

𝑘∈{𝑖 |𝐻 (𝑖 )=𝑗∧𝑣𝑖=1}
𝜁 (𝑘)) (3)

where 1𝑥≠0 (𝑥) = 1 if 𝑥 ≠ 0; otherwise, 1𝑥≠0 (𝑥) = 0.
In addition, the selection of the hashed length𝑚 is critical since it balances the efficiency and

effectiveness, as well as space requirements. Based on our experience, we aim to select a larger𝑚
as much as possible. Specifically, we set𝑚 = 216 (e.g., 512KB to 8KB), which is a reasonable upper
bound of space size and applies to the vector database Milvus [87], supporting at most 218 in bits.
We also perform a discussion on the selection of𝑚 in Appendix A.

3.4.2 Semantics-based Embedding Generation. KEENHash-stru compares binaries through the
structural features of function matching. However, the semantic differences between functions
are normalized to only two states: matched or unmatched, i.e., any function is considered equally
significant. Thus, structurally similar (i.e., massive code reuse [50]) binaries in the same or different
classes (e.g., across compile environments. See the previously mentioned example in Sec. 4.4) may
affect KEENHash-stru to some extent of distinguishing them in large-scale BCSA (Sec. 4.4), due
to lacking the capability of simultaneously capturing the semantic differences and maximizing
the unique features. This problem is also faced by other structure-based methods with even more
negative impact (Sec. 4.4). To mitigate this issue, we introduce KEENHash-sem which integrates
function semantics based on significance to derive the program semantics.
Generation.A potential way for generating the semantic embedding to a binary involves averaging
directly the pseudo function embeddings (Mean Pooling) [14]. However, this strategy ignores the
quantity of information for each function such as the size of a function [93]. Inspired by the
success of TF-IDF [90] and SIF [14] techniques which model sentence semantics based on the
weighted average of word embeddings to express the most significant words, we propose a similar
strategy to derive program semantics through function ones. Notably, the feature functions are
exclusively included in the same-class binaries and not present across any non-same-class ones,
i.e., the unique features. Thus, we utilize the intrinsic information of the function as weights to
assess its significance and thereby, maximize the semantics of feature functions for amplifying the
unique similarities (the feature functions between same-class binaries) or differences (the respective
feature functions between non-same-class ones) while offsetting the ones of the reused for stronger
distinguishing ability. Specifically, we determine the weights for a pseudo function by modeling
based on two effective factors of its lines of code (LoC) and the number of strings (NoS). Guided by
heuristics, we posit that a pseudo function’s importance in a binary increases with its LoC and NoS
since a function with a higher LoC likely handles more complex logic, making it crucial within the
overall program and a larger NoS may indicate extensive functionality in processing user inputs,
displaying data, or executing other tasks that heavily involve string operations. Therefore, for a
pseudo function 𝑃𝑖 with its LoC𝑖 and NoS𝑖 , its weight𝑤𝑖 is specified as follows:

𝑤𝑖 = 𝑓1 (LoC𝑖 , 𝛼) + 𝑓2 (NoS𝑖 , 𝛽) (4)
where 𝑓1 and 𝑓2 are designed to compute the partial weights based on LoC𝑖 and NoS𝑖 , respectively.
𝛼 and 𝛽 are hyperparameters that adjust and scale the influence of LoC𝑖 and NoS𝑖 on the overall
weight of 𝑃𝑖 . Typically, 𝑓1 and 𝑓2 are determined empirically and experimentally. We evaluate the
performance of program clone search on the IoT (malicious) and BinaryCorp (benign) repository
datasets (Sec. 4.1), without their query parts, to adjust and find an optimal configuration for them:

𝑓1 (LoC𝑖 , 𝛼) =
(LoC𝑖 )𝛼1

𝛼2
, 𝑓2 (NoS𝑖 , 𝛽) =

(NoS𝑖 )𝛽1
𝛽2

+ 1 (5)
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where 𝛼1, 𝛼2, 𝛽1, 𝛽2 = 0.4, 5, 0.45, 1 (obtained through grid search [61]). For a binary with its pseudo
functions 𝑃 = {𝑃0, 𝑃1, ..., 𝑃𝑞−1} and corresponding function embeddings 𝐸 = {e𝑝0 , e

𝑝

1 , ..., e
𝑝

𝑞−1}, its
program embedding is formulated as:

v =
1
𝑞

𝑞−1∑︁
𝑖=0

𝑤𝑖

e𝑝
𝑖

∥e𝑝
𝑖
∥2

(6)

With this approach, KEENHash-sem can maximize the feature function semantics within the same-
class binaries through the weights to effectively distinguish them from other non-same-class ones
but with massive code reuse (see Sec. 4.4). Moreover, we have experimented with other features
to set weights, such as ① the vertex centrality in call graph and ② system API call usages (e.g.,
the count of API calls in a function). However, the experimental results show that using them for
setting weights is good but less effective than LoC and/or NoS (e.g., ②), or is even less than Mean
Pooling (e.g., ①). In this study, we do not delve into these features.

3.5 Similarity Evaluation
Here, we present the similarity evaluation metric used by KEENHash for comparing two binaries.
KEENHash-stru. The program embedding produced by KEENHash-stru is a bit-vector, with each
element indicating the classification-based function matching. We leverage Jaccard similarity [46]
to evaluate similarities due to its proportional measure property (see Appendix B).
KEENHash-sem. For the float vector of KEENHash-sem, we leverage cosine similarity, which is
consistent with the comparison between function embeddings [14].

4 Evaluation
In this section, we attempt to investigate KEENHash on its performance of large-scale program-level
BCSA (see Sec. 2.1) by answering the following research questions:
•RQ1:How effective including scalable is KEENHash in the task of functionmatching for large-scale
BCSA scenarios?
• RQ2: How does KEENHash perform on program clone search with various respective large-scale
repositories?
• RQ3: Is KEENHash effective against code obfuscation on large-scale program clone search?
• RQ4: Is KEENHash effective on program clone search with larger-scale repository?
• RQ5: How does KEENHash perform on malware detection from the large-scale BCSA and clone
search perspective?

4.1 Dataset
In this section, we briefly introduce our datasets and the details of them can be found in Appendix C.
Training Dataset. Two training datasets are included for ❶ the function embedding model and ❷
the K-Means model, respectively. For ❶, we collect (and build) open-sourced C/C++ projects (along
with corresponding collected binaries across various architectures if possible) through ArchLinux
official repositories (AOR) [12], Arch User Repository (AUR) [13], and Linux Community [39],
ultimately amassing around 910K projects. The source functions (with matched pseudo ones) related
to the evaluation of RQ1 and the effectiveness of our function embedding model (see Appendix E)
are excluded, preventing data leakage. Eventually, we obtain 40.51M matched function pairs with
an average of 556 tokens per function. As for ❷, we follow previous studies [77, 91] to collect a
large number of diverse open-source C/C++ projects by crawling from Github [35] and GNU/Linux
community [39]. In total, 11,013 projects, including malicious ones (e.g., gh0st RAT malware [23]),
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are obtained, containing 56M unique C/C++ source functions. Such a substantial source function
dataset is essential for the generalization of KEENHash-stru.
Test Dataset. The test dataset is used to evaluate the performance of KEENHash on function
matching (Sec. 4.3). Specifically, we use the binary diffing dataset in DeepBinDiff [28]. In total,
there are 2,098 binaries across various versions and optimization levels. The function matching
ground truth is obtained through the Function Extraction (Sec. 3.2).
Repository and Query Dataset. To evaluate KEENHash on BCSA (Sec. 2.1), we collect 5 datasets:
▶ IoT.We collect recent 37,657 nonpacked C/C++ (detected with DIE [43]) IoT malware samples
fromMalwareBazaar [65] across 21malware families.We randomly divide the dataset into repository
and query datasets in a 9:1 ratio and each family has at least two samples in the query.
▶ BinaryCorp (BC). The dataset [86] is crafted based on AOR and AUR across 5 optimization
levels. There are 9,819 source code and 45,593 distinct C/C++ binaries with 9,498 sample families.
We randomly divide the dataset into repository and query in a 7.5:2.5 ratio and each family has at
least one in the query. All binaries are stripped. Notably, it contains massive code reuse (Sec. 4.4).
▶ BinKit (BK). BinKit [54] dataset is crafted from 51 GNU software packages with 235 unique
C/C++ source code (i.e., sample families). It is diverse along different optimization levels, compilers,
architectures, and obfuscations. Like BinaryCorp, it also contains massive code reuse (Sec. 4.4).

•Normal (BinKit𝑁 /BK𝑁 ): The normal one is compiled with 288 different compile environments
for 67,680 binaries to 51 packages. It covers 8 architectures (arm, x86, mips, and mipseb, each
available in 32 and 64 bits), 9 compilers (5 versions of GCC and 4 versions of Clang), and 4
optimization levels (O0, O1, O2, and O3);

• Obfuscation (BinKit𝑂 /BK𝑂 ): The obfuscation one is compiled with 4 obfuscation options,
instruction substitution (SUB), bogus control flow (BCF), control flow flattening (FLA), and all
combined (ALL), through Obfuscator-LLVM [53]. The same architectures and 5 optimization levels
(extra Os) are also covered, and 37,600 binaries are generated.

The BK𝑁 dataset is divided randomly into repository and query in a 9:1 ratio. 10% of the samples
are randomly selected from the BK𝑂 dataset as the query to maintain experimental consistency in
Sec. 4.5 and 4.6. All binaries are stripped.
▶ MLWMC (MC). MLWMC [25] is a recent real-world PE 32 malware dataset. It contains 67,000
malware samples across 670 malware families. We consider the 49,820 nonpacked C/C++ samples,
belonging to a total of 615 malware families where each family contains at least 20 samples.
Moreover, we divide the dataset in the same way as IoT.

4.2 Experiment Setup
Function Embedding Model. The maximum length of the embedding model is 2048, the training
epoch is 196, the batch size (i.e., 𝑁 ) is 512, and the learning ratio is 0.001.
K-Means Model. The cluster size is set to 2𝑘 where 𝑘 ∈ [16, 22] with the iteration of 30. Further-
more, we use FAISS-GPU [51] to train K-Means models. Thus, the maximum cluster size is limited
to 222 due to the VRAM constraint. The clustering takes at most 20 hours for the size of 222.
KEENHash. The parameter settings are shown in Sec. 3.4.
Baseline. For RQ1, we use popular open-sourced Diaphora [52], the most recent state-of-the-art
academic SigmaDiff [34], and commercial BinDiffMatch [57] tools for function matching between
binaries. Diaphora uses function hash values and calling relationships. SigmaDiff and BinDiffMatch
employs function embeddings, generated through deep/machine learning (DL/ML), and a call
graph-based heuristic strategy to find the most similar functions. There are other relevant tools
such as DeepBinDiff [28] for direct binary diffing, and Asm2Vec [26] and PalmTree [60] for function
embedding generation. In this study, we do not include them since SigmaDiff is an upgrade
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of DeepBinDiff [28, 34], and both SigmaDiff and BinDiffMatch have already covered function
embedding generation for function matching, better than Asm2Vec and PalmTree.
For RQ2 to RQ5, we include 4 state-of-the-art structure-based methods as our baselines: SS-

DEEP [55], TLSH [70], Vhash [82], and PSSO [16]. SSDEEP and TLSH are two fuzzy hash algorithms
(on whole files) that are widely used in binary similarity evaluation. Vhash, a widely-recognized
security BCSA method, is an in-house similarity clustering algorithm, based on a simple structural
feature hash. It empowers VirusTotal to find similar files and perform threat intelligence. However,
VirusTotal does not provide the information of similarity space. Thus, we define the Vhash in the
Hamming space due to the best performance in experiments. PSSO is a spectral-based method.
It represents a binary by calculating the spectrum of its call graph and the edge counts in the
control flow graphs (CFGs) of functions. In this study, we include SSDEEP and TLSH (belonging
to fuzzy hashing families) due to their popularity in the industry for large-scale program-level
BCSA [4, 65, 82], though previous works [42, 84] claim that they may have poor performance. For
comprehensive comparison, therefore, we incorporate the most recent methods from both industry
and academia (i.e., Vhash and PSSO). We also leverage 4 methods to compare with KEENHash for
the ablation study purpose in RQ2 and RQ3: Mean Pooling (Sec. 3.4.2), KEENHash16w/oFH, LoC, and
NoS. KEENHash16w/oFH is the variant of KEENHash-stru but with a cluster size of 216 for K-Means
and thereby without Feature Hashing, for assessing the necessity of the Feature Hashing module.
LoC and NoS represent using either one of the features in KEENHash-sem, for demonstrating their
respective contribution. Here, we do not include function matching (and DL/ML)-based BCSA
methods for comparison, such as SigmaDiff [34], BinDiffMatch [57], and other function embedding
methods [26, 60, 83], since they do not support direct use in large-scale scenarios (Sec. 4.3). The
effectiveness of our function embedding model and correspondingly generated program embed-
dings, compared with others, are discussed in Appendix E, as mentioned before. We also take no
string-based method in as it lacks robustness and is vulnerable to simple string-based attacks (Sec.
4.4).
Experiment Environment. All the experiments are run on a Linux server running Ubuntu 20.04
with AMD EPYC 7K62 48-Core Processor, 1TB RAM, and 8 Nvidia A100 GPUs. The program clone
search is implemented atop Milvus [87].

4.3 RQ1: Effectiveness and Scalability of Function Matching
Motivation. For KEENHash-stru, it is essential to choose an effective K-Means model to reflect
the results of function matching accurately. Furthermore, we show that KEENHash-stru is scalable
on large-scale BCSA scenarios but existing state-of-the-art function matching methods are not.
Approach. We train multiple K-Means models by selecting various cluster sizes of 2𝑘 . These
K-Means models are used for binary diffing to match same-class pseudo functions (compiled from
the same source functions) between two same-class binaries. Same-class pseudo functions should
be classified into the same clusters, whereas those from different classes should be assigned to
distinct clusters. The methods used for comparison are Diaphora, SigmaDiff, and BinDiffMatch.
The compared pairs of binaries can be found here [19], aligning with BinDiffMatch. In total, there
are 1,926 pairs of binaries with 101,289 pairs of matched functions. The evaluation metrics include
Precision (the ratio of corrected matches to all derived results), Recall (the ratio of corrected matches
to all the ground-truth data), and F1-Score (the harmonic mean of Precision and Recall). We also
measure the time cost for function matching to compare their scalability in large-scale scenarios.
Result. Table 1 shows that the performance of function matching with our K-Means models is
enhanced as the cluster size increases. In particular, the K-Means (𝑛=222) achieves the highest
0.7573, 0.7730, and 0.7651 in Precision, Recall, and F1-Score, significantly outperforming Diaphora.
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Table 1. The performance of function matching for
K-Means of KEENHash-stru in different cluster size
settings.

Method Precision Recall F1-Score

Diaphora [52] 0.7121 0.5944 0.6480
SigmaDiff [34] 0.8640 0.7827 0.8213
BinDiffMatch [57] 0.9652 0.8870 0.9244
K-Means (𝑛=222) 0.7573 0.7730 0.7651
K-Means (𝑛=221) 0.7282 0.7714 0.7492
K-Means (𝑛=220) 0.7023 0.7656 0.7326
K-Means (𝑛=219) 0.6403 0.7542 0.6926
K-Means (𝑛=218) 0.6113 0.7182 0.6605
K-Means (𝑛=217) 0.5675 0.7016 0.6274
K-Means (𝑛=216) 0.5295 0.7138 0.6080

Table 2. Statistics of function matching time cost for
K-Means (𝑛=222), SigmaDiff, and BinDiffMatch.

Method Mean Cost (1 core) RQ1 Scenario (1 core) RQ4 Scenario (48 cores)

SigmaDiff 0.25074 seconds 483 seconds 323 days
BinDiffMatch 0.04314 seconds 83 seconds 56 days
K-Means (𝑛=222) 0.00020 seconds 0.38574 seconds 395.83 seconds
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Fig. 2. The time cost of performing function match-
ing for K-Means (𝑛=222), SigmaDiff, and BinDiff-
Match with 1 core. K-Means (𝑛=222) takes an av-
erage of 0.00020 seconds to complete one matching
between two binaries, while SigmaDiff and BinDiff-
Match require 0.25074 and 0.04314 seconds.

Compared to SigmaDiff and BinDiffMatch, the performance of the K-Means is relatively poorer, but
still able to maintain an effective capacity of 93% to SigmaDiff and 83% to BinDiffMatch in F1-Score
(and it is the only one that supports large-scale scenarios. See later). This is deemed reasonable as
the K-Means models are unable to distinguish the similarities among classified functions and do
not incorporate call graphs from binaries to provide essential diffing information for matching
functions, resulting in a lower Recall. The classification nature can also result in multiple matched
functions being classified into the same clusters, raising the rate of false positives (cartesian product)
and lowering Precision.
• Scalability. Additionally, we plot the cumulative distribution of the time cost for only function
matching procedure of pairs of binaries in Fig. 2 among SigmaDiff, BinDiffMatch, and K-Means
(𝑛=222) with 1 core (Diaphora is out of the bound of 1 second). Table 2 shows the statistics of time
cost for them on function matching across mean time for one matching, RQ1 scenario total time
cost, and RQ4 scenario (Sec. 4.6) total time cost. The function embeddings, call graphs, and function
classifications (K-Means) are generated offline, which is reasonable in large-scale scenarios. The
results show that K-Means is on average 1,254 times and 215 times faster than SigmaDiff and
BinDiffMatch, respectively. Particularly, in the large-scale RQ4 scenario of Sec. 4.6 (see Table 2),
SigmaDiff and BinDiffMatch will cost 323 and 56 days to perform 5.3 billion similarity evaluations
(a typical workload within one day) between binaries with 48 processes (48 cores) running in parallel,
which is unscalable and unavailable. Whereas KEENHash16stru (Sec. 4.4) based on K-Means (𝑛=222)
takes only 395.83 seconds. Therefore, we consider the K-Means (𝑛=222) model to be effective, as it
provides an effective function matching capability and is well-suited for scalability for program-
level BCSA on large-scale scenarios. As for Diaphora, SigmaDiff, and BinDiffMatch, they are unable
to support such large-scale scenarios and are thereby excluded from the following RQs.

Answer 1: KEENHash-stru can effectively (0.7651 in F1-Score) and scalably perform function
matching in large-scale scenarios. While the state-of-the-art matching methods are not
scalable, being at least 215 times slower. In a scenario with 5.3 billion evaluations, KEENHash-
stru takes 395.83 seconds while they will cost at least 56 days.
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Table 3. Program clone search
against string obfuscation. The
string-based method Minhashs is
vulnerable to the simple attack.

Method mAP@100 mP@100

Mirai𝑁 Mirai𝑂 Mirai𝑁 Mirai𝑂
Minhashs 1.0 0.1909 1.0 0.1040

PSSO 0.9977 0.9887 0.9960 0.9894
Vhash 0.6442 0.6442 0.5350 0.5350
TLSH 0.8583 0.8472 0.8393 0.8398
SSDEEP 0.9901 0.9900 0.9900 0.9900
KEENHash16stru 0.9997 0.9999 0.9996 0.9997
KEENHash𝑓sem 0.9937 0.9939 0.9883 0.9873

Table 4. The performance of program clone search of KEENHash on
respective datasets of IoT, BinaryCorp, BinKit𝑁 , and MLWMC.

Method mAP@100 mP@100

IoT BC BK𝑁 MC Avg. IoT BC BK𝑁 MC Avg.
PSSO 0.9383 0.3212 0.6803 0.7164 0.6641 0.8991 0.0141 0.3033 0.3666 0.3958
Vhash 0.6789 0.5646 0.3379 0.7377 0.5798 0.6455 0.0207 0.0616 0.3581 0.2715
TLSH 0.9526 0.3768 0.4883 0.6625 0.6201 0.9304 0.0168 0.0809 0.2758 0.3260
SSDEEP 0.9393 0.2371 0.1598 0.6412 0.4944 0.8050 0.0055 0.0369 0.2436 0.2728
KEENHash16w/oFH 0.9580 0.6613 0.6410 0.7430 0.7508 0.9343 0.0261 0.4226 0.3972 0.4451
Mean Pooling (Baseline) 0.9599 0.7289 0.7369 0.7482 0.7935 0.9335 0.0333 0.5263 0.4081 0.4753
LoC 0.9595 0.7438 0.7406 0.7577 0.8004 0.9336 0.0339 0.5548 0.4123 0.4837
NoS 0.9604 0.7610 0.7972 0.7486 0.8168 0.9330 0.0341 0.6604 0.4022 0.5074
KEENHash16stru 0.9602 0.7247 0.7270 0.7519 0.7910 0.9363 0.0322 0.5467 0.4144 0.4824
KEENHash𝑓sem 0.9608 0.7628 0.7911 0.7581 0.8182 0.9361 0.0346 0.6531 0.4126 0.5091

4.4 RQ2: KEENHash on Program Clone Search
Motivation. In this RQ, we attempt to evaluate KEENHash performance on program clone search,
reflecting its capacity in program-level BCSA on respective and different large-scale scenarios.
Approach. We perform program clone search on 4 repository and query datasets (except BinKit𝑂 ),
respectively. Here, we denote KEENHash-stru and sem as KEENHash16stru (16 represents Feature
Hashing size of 216) and KEENHash𝑓sem (𝑓 represents float vectors), respectively. The evaluation
metrics include mAP@𝑘 (Mean Average Precision at 𝑘) and mP@𝑘 (Mean Precision at 𝑘) [22] where
𝑘 represents retrieving the most Top-𝑘 similar results. mAP@𝑘 is a metric that evaluates the mean
(across all retrieving results) of the average of the Precision@𝑘𝑖 (𝑘𝑖 ∈ {𝑖 |1 ≤ 𝑖 ≤ 𝑘 ∧𝑟 (𝑖) = 1} where
𝑟 (𝑖) = 1 represents that the 𝑖𝑡ℎ retrieved sample is in the same class to the query sample; otherwise,
𝑟 (𝑖) = 0) to one retrieving. The higher the ranking of same-class results returned, the greater the
mAP@𝑘 . However, mAP@𝑘 cannot assess the proportion of same-class results returned. Therefore,
we augment it with mP@𝑘 , which calculates the mean of the Precision@𝑘 across all retrieving.
Where Precision@𝑘𝑖 presents the ratio of retrieved same-class samples to the retrieved Top-𝑘𝑖 ones.
Here, we fix 𝑘 = 100 to evaluate the KEENHash BCSA capacity on multiple same-class binaries.
• String-based Method. We introduce 1 string-based method to demonstrate its vulnerability
to simple string-based attacks (the reason for excluding it from the following RQs). The string-
based method (Minhashs) extracts strings from a binary through command strings and uses
MinHash [21] to generate 128 hash values as its representation, in the Jaccard similarity space.
Real-world malware usually avoids meaningful string literals, making challenges to the string-based
analysis systems. Mirai [11] is a famous botnet family, targeting various kinds of IoT devices for
DDoS attacks. The initial version has been open-sourced since 2016 [47]. By analyzing the source
code of Mirai, we discover that Mirai encrypts almost all of its strings. Therefore, we substitute
the secret key originally used by Mirai and encrypt all strings in the source code using the same
encryption strategy, where the program behavior remains unchanged. Furthermore, we compile
both original (Mirai𝑁 ) and newly obfuscated (Mirai𝑂 ) versions across 9 architectures, 5 optimization
levels, and 2 Mirai options, obtaining 90 binaries per version. These binaries are taken as the query
dataset to search against the IoT repository which contains Mirai variants.

According to the results shown in Table 3, apart fromMinhashs, all other methods show consistent
performance in mAP@100 and mP@100 against both Mirai𝑁 and Mirai𝑂 since they do not mainly
rely on string features. However, turn to Minhashs, its mAP@100 and mP@100 decrease by 80.91%
and 89.6% from Mirai𝑁 to Mirai𝑂 . The reason for Minhashs, against Mirai𝑂 , still achieving a 0.1040
mP@100 is due to the unobfuscated strings added during the compilation process. Such a result
alerts that Minhashs is not a reliable system since adversaries can easily breach it using simple
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string encryption strategies for hiding the original information of string literals. Therefore, we
exclude string-based methods from the comparison in RQ2 to RQ5.
Result. Table 4 presents the program clone search results on the respective datasets, including
their average results. KEENHash (i.e., KEENHash16stru and KEENHash𝑓sem) methods outperform all
other structure-based methods, by averages of at least 12.69% and 8.66% in mAP@100 and mP@100
(i.e., PSSO), respectively. Furthermore, KEENHash demonstrates more distinct advantages on the
two benign datasets with massive code reuse (see below). For instance, PSSO on BinaryCorp
scores a rather low mAP@100 at only 0.3212 (e.g., lower than KEENHash16stru’s 0.7247). Even within
malware datasets, KEENHash continues to outperform these methods in both metrics. Since these
structure-based methods, depending only on simple features (e.g., PSSO’s), extract no semantic
information, the effectiveness of similarity evaluation between binaries can be significantly impacted
across compilation environments (e.g., O0 vs. O3 [26]) and (malware) variants. Instead, KEENHash
leverages semantics in pseudo functions, mitigating the impact of these factors.
• Ablation Study. Comparing KEENHash16stru with KEENHash16w/oFH, Table 4 shows that the former
outperforms the latter across all datasets. For instance, KEENHash16stru achieves 0.7270 mAP@100
on BinKit𝑁 , significantly surpassing KEENHash16w/oFH’s by 8.6%. As indicated by Sec. 4.3, smaller
cluster sizes 𝑛 of K-Means affect the function matching results, which in turn impacts the quality
of the generated program embeddings. These two experimental results demonstrate the necessity
of a well-configured K-Means (i.e., 𝑛=222) in conjunction with Feature Hashing.

Regarding LoC and NoS, in general, both LoC and NoS perform better thanMean Pooling (without
any feature), indicating that either of them has a positive contribution. For example, LoC and NoS
get 0.7438 and 0.7610 mAP@100, higher than Mean Pooling’s 0.7289. In addition, KEENHash𝑓sem
with both features is generally better than LoC and NoS. For instance, on MLWMC, KEENHash𝑓sem
achieves 0.7581 mAP@100, outperforming both LoC and NoS. Therefore, we can conclude that the
introduction of both LoC and NoS is useful for enhancing KEENHash𝑓sem (which obtains the best
results on average, compared with either LoC or NoS).

As for Mean Pooling, we analyze and discuss it later as it relates to RQ2 and RQ3.
•Massive Code Reuse. The two KEENHash and the pooling methods exhibit similar performance
on IoT and MLWMC while KEENHash𝑓sem performs significantly better than others on the benign
datasets (e.g., 5.42% and 12.68% improvements in mAP@100 and mP@100 to Mean Pooling for
BinKit𝑁 ). A common feature of these two datasets is that multiple non-same-class binaries can be
compiled (same compile environment) from a single project, and they share (i.e., massive code reuse)
a large number of the common functions (e.g., around 72%/63%, in Jaccard similarity, between cp

with O3 and ln with O3/cp with O0 in Coreutils-8.29. KEENHash𝑓sem is better in distinguishing
these kinds of cases) [12, 13, 39], leading to difficulty for BCSA methods to distinguish them under
the two datasets (across compile environments). Thus, only maximizing the unique features can
more effectively distinguish them (Sec. 3.4.2). Therefore, such a result illustrates the advantages of
integrating function semantics with their intrinsic information to distinguish binaries with massive
code reuse by maximizing such feature function semantics. Furthermore, though KEENHash16stru has
a similar performance to Mean Pooling on the 4 datasets, it shows significantly greater robustness
across compile environments and under code obfuscation (Table 5 and 6).
• Robustness across Compile Environments. We evaluate the robustness of KEENHash across
compile environments (see Table 5) on BinKit𝑁 . Here we denote <𝑥 , 𝑦> (e.g., <O3, O0>) as that the
new query and repository contain only the binaries with options 𝑥 and 𝑦 from the original ones,
respectively. Thus, the primary differences between the new query and the repository are focused
on 𝑥 and 𝑦. Here, we only list the representative results in Table 5, where the second/third-row
option represents query/repository. The results show that KEENHash methods outperform all other
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Table 5. The performance of KEENHash on program clone
search across compile environments on BinKit𝑁 query and
repository. The second/third row represents query/repository
(samples) with specific compile environments.

Method Metric
Optimization Compiler Architecture

O0 O1 O2 O3 GCC ARM MIPS x86
O1 O2 O3 O0 Clang MIPS x86 ARM

PSSO
mAP@𝑘 0.4833 0.3606 0.4486 0.1475 0.3344 0.3179 0.2152 0.4491
mP@𝑘 0.1712 0.1282 0.1334 0.0727 0.1572 0.0916 0.1034 0.1644

Vhash mAP@𝑘 0.2969 0.2778 0.3083 0.2655 0.0095 0.0152 0.0078 0.0086
mP@𝑘 0.0232 0.0229 0.0245 0.0222 0.0045 0.0048 0.0034 0.0040

TLSH mAP@𝑘 0.0682 0.2955 0.4046 0.0735 0.1210 0.0547 0.0515 0.0814
mP@𝑘 0.0226 0.0479 0.0489 0.0268 0.0446 0.0237 0.0255 0.0375

SSDEEP mAP@𝑘 0.0540 0.0864 0.1050 0.0481 0.0265 0.0584 0.0320 0.0510
mP@𝑘 0.0144 0.0184 0.0172 0.0165 0.0163 0.0187 0.0139 0.0181

Mean Pooling (Baseline) mAP@𝑘 0.7387 0.6956 0.7077 0.7155 0.7558 0.7095 0.7263 0.6824
mP@𝑘 0.3859 0.3701 0.3627 0.3791 0.5171 0.3865 0.3648 0.3421

KEENHash16stru
mAP@𝑘 0.7841 0.7569 0.7293 0.8072 0.8125 0.7870 0.7843 0.7487
mP@𝑘 0.4571 0.4350 0.4051 0.4654 0.6106 0.4385 0.4144 0.4122

KEENHash𝑓sem
mAP@𝑘 0.8195 0.7817 0.7684 0.8080 0.8245 0.7958 0.8024 0.7640

mP@𝑘 0.4688 0.4613 0.4364 0.4689 0.6330 0.4620 0.4373 0.4100

Table 6. The performance of KEENHash on
program clone search against code obfus-
cation on BinKit𝑁 repository and BinKit𝑂
query (samples) with specific compile envi-
ronments.

Method Metric SUB BCF FLA ALL 𝑂

𝑁 𝑁 𝑁 𝑁 𝑁

PSSO
mAP@𝑘 0.6675 0.3727 0.2085 0.1231 0.3483
mP@𝑘 0.3043 0.2170 0.1315 0.0867 0.1872

Vhash mAP@𝑘 0.0034 0.0068 0.0048 0.0070 0.2176
mP@𝑘 0.0023 0.0041 0.0033 0.0036 0.0536

TLSH mAP@𝑘 0.3776 0.0899 0.0580 0.0228 0.1395
mP@𝑘 0.0778 0.0361 0.0232 0.0096 0.0373

SSDEEP mAP@𝑘 0.1062 0.0627 0.0338 0.0145 0.0552
mP@𝑘 0.0393 0.0325 0.0188 0.0119 0.0260

Mean Pooling (Baseline) mAP@𝑘 0.7673 0.6359 0.4377 0.2608 0.5312
mP@𝑘 0.5227 0.5178 0.3825 0.2281 0.4166

KEENHash16stru
mAP@𝑘 0.7757 0.8207 0.7735 0.7070 0.7704

mP@𝑘 0.5679 0.6789 0.5915 0.5593 0.6006

KEENHash𝑓sem
mAP@𝑘 0.8026 0.7353 0.5032 0.2726 0.5849
mP@𝑘 0.6428 0.6350 0.4427 0.2483 0.4974

structure-based methods across all options, especially on <O3, O0>. As mentioned earlier, simple
features can be significantly affected by compilation environments, weakening the effectiveness of
them. Furthermore, both KEENHash methods significantly outperform the pooling method (e.g., 9%
and 8% improvements in mAP@100 and mP@100 on <O3, O0>), illustrating that direct integrating
on function semantics exhibits poorer robustness.

Answer 2: Both KEENHash methods significantly outperform state-of-the-art methods
across 4 datasets in terms of performance by an average of at least 12.69% in mAP@100
on program clone search. In addition, KEENHash𝑓sem is more effective than KEENHash16stru
and Mean Pooling in the massive code reuse scenario. Both KEENHash methods also show
greater robustness across compilation environments than others including Mean Pooling.

4.5 RQ3: KEENHash against Code Obfuscation
Motivation. Code obfuscation is the process of modifying binaries to make them no longer useful
to hackers while maintaining them fully functional. On the contrary, it can interfere with existing
BCSA methods. In this RQ, we assess the robustness of KEENHash against code obfuscation.
Approach.We use BinKit𝑂 ’s query to retrieve binaries from BinKit𝑁 ’s repository in an obfuscation
vs. normal scenario. In BinKit𝑂 , SUB transforms fragments of assembly code to their equivalent form
through predefined rules; BCF modifies the CFGs of functions by adding extensive irrelevant basic
blocks; FLA changes the original CFG using a complex hierarchy of new conditions as switches;
and, ALL combines all obfuscations above. The evaluation metrics include mAP@100 and mP@100.
Result. Table 6 presents the retrieving results against code obfuscation where ’O’/‘N’ represents
the complete query or repository of BinKit𝑂 /BinKit𝑁 . According to the results, KEENHash methods
consistently outperform other structure-based methods in all scenarios (e.g., KEENHash16stru outper-
forms PSSO by 58% and 47% in mAP@100 and mP@100 on <ALL, 𝑁>). In obfuscation scenarios,
semantics in pseudo functions still distinguish binaries better than simple features.

Furthermore, in general, KEENHash16stru has better robustness with 0.7704 mAP@100 and 0.6006
mP@100 on <𝑂 , 𝑁> than KEENHash𝑓sem’s 0.5849 and 0.4974. Although code obfuscation can impact
the effectiveness of function embeddings, especially for <ALL, 𝑁>, our K-Means model mitigates
this by transforming function similarity into a matching problem (i.e., 0 or 1) and still capturing
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Table 7. Program clone search against all datasets of IoT, BinaryCorp, BinKit𝑁 , MLWMC, BinKit𝑂 , Mirai𝑁 ,
and Mirai𝑂 . The query datasets are shown in the table and the repository is the merge of repositories of IoT,
BinKit𝑁 , BinaryCorp, and MLWMC.

Method mAP@100 mP@100

IoT BinaryCorp BinKit𝑁 MLWMC BinKit𝑂 Mirai𝑁 Mirai𝑂 IoT BinaryCorp BinKit𝑁 MLWMC BinKit𝑂 Mirai𝑁 Mirai𝑂
PSSO 0.9144 0.3136 0.6798 0.7153 0.3256 0.8781 0.8430 0.8436 0.0123 0.2779 0.3623 0.1615 0.8470 0.8183
Vhash 0.6812 0.5651 0.3414 0.7375 0.2179 0.3931 0.3931 0.6156 0.0206 0.0604 0.3585 0.0524 0.3917 0.3917
TLSH 0.9438 0.3769 0.4888 0.6801 0.1362 0.6692 0.6732 0.9148 0.0168 0.0797 0.3206 0.0346 0.6555 0.6661
SSDEEP 0.7045 0.2375 0.1606 0.6413 0.0516 0.0778 0.0 0.2258 0.0054 0.0375 0.2430 0.0222 0.0066 0.0
KEENHash16stru 0.9599 0.7243 0.7270 0.7515 0.7704 0.9997 0.9999 0.9354 0.0322 0.5466 0.4141 0.6004 0.9996 0.9997
KEENHash𝑓sem 0.9609 0.7627 0.7911 0.7553 0.5666 0.9937 0.9939 0.9352 0.0346 0.6530 0.4116 0.4910 0.9883 0.9873

enough relationships between normal and obfuscated functions. Thereby, it can reduce the impact of
similarities among normal and obfuscated functions. On <SUB, 𝑁>, KEENHash𝑓sem is slightly better
since the impact of SUB on function embeddings is relatively weak. Additionally, the two KEENHash
methods perform significantly better than Mean Pooling in both metrics (e.g., 23.92% and 18.4%
improvements in mAP@100 and mP@100 on <𝑂 , 𝑁> for KEENHash16stru), demonstrating again the
advantages of structure and semantics-based program embedding generation of KEENHash.

Answer 3: KEENHash is more robust against code obfuscation than state-of-the-art meth-
ods by at least 23.66% - 42.21% in mAP@100 on <𝑂 , 𝑁>. In addition, the performance of
KEENHash16stru is generally better than KEENHash𝑓sem. Both KEENHash methods are also
more robust than Mean Pooling by 5.37% - 23.92% in mAP@100 on <𝑂 , 𝑁>.

4.6 RQ4: KEENHash on Larger-scale Repository
Motivation. The comparisons should not be affected greatly by the scale and distributions of
binaries. In this RQ, we evaluate the robustness of KEENHash in distinguishing binaries on a
larger-scale dataset, simulating the diversity of data distributions in real-world scenarios (e.g.,
across Linux/Windows and benign/malicious binaries).
Approach. We merge the repositories of IoT, BinKit𝑁 , BinaryCorp, and MLWMC in sequence
to form a larger repository, where the order of samples within each repository is maintained.
Furthermore, we use 7 query datasets from all previous experiments. In total, there are 171,075 and
31,230 binaries in the repository and query, respectively, indicating 5.3 billion similarity evaluations
(a typical evaluation workload within one day based on VirusTotal-related reports [25, 80, 82]). The
metrics include mAP@100 and mP@100.
Result. The experimental results are shown in Table 7. By Cliff’s Delta effect size [64] between
the pair of results (i.e., two metrics) of respective repositories and the larger repository to each
method, the measured effect sizes show that only PSSO and SSDEEP have small and large differ-
ences, while others have negligible differences, in general. Where SSDEEP shows a significant
drop in both metrics on the IoT query (PSSO has a drop in mP@100 by 5.6%). Furthermore, by
investigating Mirai𝑁 and Mirai𝑂 , the 4 structure-based methods, with simple features, have an
obvious performance decrease compared to the results in Table 3. In contrast, KEENHash methods
maintain consistent performance. As a result of the dataset merge, the capability of structure-based
methods to differentiate Mirai from binaries in BinaryCorp, BinKit𝑁 , and MLWMC is negatively
affected, demonstrating that they can be potentially and significantly affected by the scale and
distributions of binaries. Overall, across the 7 queries, two KEENHash methods can maintain con-
sistent performance (only nearly consistent for KEENHash𝑓sem to BinKit𝑂 due to code obfuscation
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Fig. 3. Program clone search on all binaries.

Table 8. Malware detection against Mirai𝑁 /𝑂 (mali-
cious), IoT (malicious), and BinKit𝑁 (benign) dataset.
Numbers represent how many binaries are misclassi-
fied by the BCSAmethods in different𝐾-NN settings.

Method
Mirai𝑁 /𝑂 IoT BinKit𝑁

False Negative Number False Positive Number

𝐾=1 𝐾=3 𝐾=5 𝐾=1 𝐾=3 𝐾=5 𝐾=1 𝐾=3 𝐾=5
PSSO✗ 30 18 12 29 45 51 5 16 31
Vhash ✗ 40 40 60 34 46 59 2 4 5
TLSH ✗ 50 52 52 14 18 17 1 1 1
SSDEEP ✗ 0 174 174 0 1143 1514 3856 1 1
KEENHash16stru ✓ 0 0 0 0 0 0 0 0 0
KEENHash𝑓sem✓ 0 0 0 0 0 0 0 0 0

to the effectiveness of function embeddings), while the 4 structure-based methods always have
obvious and slight (e.g., IoT) degradation to some of these queries.
We further plot the performance of program clone search across multiple 𝑘 ∈ [1, 100] in Fig.

3, where the query is the merged one of all the 7 queries. The results show that in general,
KEENHash can achieve at least 0.7647 mAP@100 and 0.3858 mP@100 and outperforms other
structure-based methods (by at least 23.16% and 13.79% in 𝑘 = 100, i.e., PSSO) across different 𝑘 ,
indicating its enhanced capacity on large-scale BCSA. Moreover, we highlight that KEENHash16stru
and KEENHash𝑓sem costs only 395.83 and 90.31 seconds with CPU (48 cores), respectively, for 5.3
billion similarity evaluations (i.e., scalable in large-scale scenarios).

Answer 4: In general, KEENHash outperforms other structure-based methods by at least
23.16% in mAP@100, and shows greater robustness, against a larger-scale dataset. Addition-
ally, it is scalable for large-scale BCSA scenarios. For instance, in the scenario with 5.3 billion
similarity evaluations, KEENHash takes at most 395.83 seconds.

4.7 RQ5: KEENHash on Malware Detection
Motivation. In previous RQs, we have demonstrated the superiority of KEENHash from aspects
including effectiveness and robustness. In this RQ, we show how KEENHash can be helpful in a
more specific and critical large-scale BCSA security application: malware detection.
Approach. We leverage the merged repository used in RQ4 as the malware and benign binary
database. Additionally, we perform malware detection (i.e., benign or malicious) by leveraging IoT,
Mirai𝑁 /𝑂 , and BinKit𝑁 queries against the merged repository from the malware security aspect. We
use 𝐾-NN as the binary classifier and the numbers of false negatives (i.e., misclassified as benign
samples) and false positives (i.e., misclassified as malicious samples) as the metrics.
Result. As shown in Table 8, KEENHash (both structural and semantic) outputs zero misclassifica-
tion in all three datasets across malicious and benign, in all 𝐾-NN settings. In comparison, all other
BCSA methods can make mistakes, even for the widely-recognized security method Vhash from
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VirusTotal. We identified two primary causes of misclassified cases: (1) the query binary belongs
to a less common architecture (e.g., m68k), resulting in significant code differences compared to
the repository ones; and (2) the query binary is a variant of repository ones, but with substantial
changes in code functions (e.g., much more functions and invocations), which simple features
(e.g., spectrum of call graph) fail to capture them. Thanks to the capability to capture function
semantics and represent binaries, KEENHash can accurately classify these challenging malware
samples, while other methods with simple features struggle with such variations, resulting in false
negatives. For false positives, the shortcomings of these methods across compilation environments
(see Sec. 4.4) lead to prioritizing the retrieval of malicious binaries in certain cases.

Answer 5: Thanks to the powerful LLM-based function embedding and effective program
representation, KEENHash demonstrates superior performance in the large-scale BCSA
scenario of malware detection, and significantly outperforms previous methods including
the widely-recognized method Vhash from VirusTotal.

5 Limitations
KEENHash suffers from the limitations to the property of static analysis including decompilation.
For example, packed binaries and binaries with payloads are difficult to decompile accurately to
obtain precise function results, thus affecting its performance. Furthermore, substantial variations
in or among functions warrant caution, like significant source code revisions (e.g., code refac-
toring), aggressive inter-procedural compiler optimizations (e.g., function inlining and link-time
optimizations), and great inter or inner-procedural code obfuscations (e.g., function merging). These
variations may disrupt the similarity between program structures or affect the performance of our
function embedding model. In the future, we plan to systematically evaluate the impact of such
variations and propose corresponding mitigation strategies. In addition, the maximum length of
input tokens to our function embedding model is limited due to space consideration [81]. This
limitation can be overcome with new LLM architectures introduced in the future.

6 Related Work
Function-level Similarity Analysis. Recently, there has been a tremendous increase in the
popularity of (binary) function-level similarity analysis [26, 42, 54, 67, 83, 85, 86, 94, 95]. Consider-
ing performance and scalability, these function representation techniques mainly focus on static
analysis and deep learning. Gemini [92] extracts crafted features of each basic block from Ge-
nius [32] and employs GNN to learn the representations of CFG to functions. jTrans [86] leverages
a transformer-based method with a jump-aware representation of the analyzed binary functions
and a newly-designed pre-training task to generate embeddings, encoded with CFG information.
VulHawk [63] proposes an intermediate representation function model with the language model
and GCN, followed by an entropy-based adapter to transfer function embedding space from different
file environments into the same one to alleviate the differences caused by various file environments.
CLAP [83] boosts superior transfer learning capabilities by effectively aligning binary code with
their semantics explanations. However, it is difficult to directly adapt them in program-level BCSA
due to the scalability problem.
Program-level Similarity Analysis. There are few recent studies related to program-level
BCSA [16, 28, 42, 44]. SSDEEP [55] is a fuzzy hashing technique based on Context Triggered
Piecewise Hashing (CTPH) to hash files into hash strings. TLSH [70] is a fuzzy hashing method
based on k-skip N-gram features, followed by LSH to hash feature counts into a vector with 128
buckets. Vhash [82] is an in-house similarity clustering algorithm, based on a simple structural
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feature hash. PSSO [16] is a spectral-based method that represents programs through their spec-
trums of call graphs and the edge counts of CFGs. These methods are limited to their performance
on large-scale BCSA. There are also some studies evaluating similarity based on dynamic analysis
and symbolic execution [10, 46, 62, 67]. However, such methods are limited to the explorable
execution space and the runtime overhead of the representation generation in large-scale scenarios.
Furthermore, some work [28, 34, 52, 57] focuses on binary diffing. While these methods also fail to
scale to large-scale scenarios due to the scalability problem, which is shown in our experiment.

7 Conclusion
In this paper, we propose a novel large-scale program-level BCSA hashing approach KEENHash, for
evaluating similarities among binaries. KEENHash captures binaries from the dual perspectives of
function matching based on K-Means and Feature Hashing, and program semantics by integrating
function embeddings to generate respective compact and fixed-length program embeddings. Our
experimental results demonstrate that KEENHash is at least 215 times faster than the state-of-the-
art function matching tools while maintaining effectiveness. Furthermore, in a large-scale scenario
with 5.3 billion similarity evaluations, KEENHash takes only 395.83 seconds while the previous
tools will cost at least 56 days. We also evaluate the two KEENHash methods on the program clone
search of large-scale BCSA across extensive datasets in a total of 202,305 binaries. Compared with
4 state-of-the-art methods, KEENHash outperforms all of them by at least 23.16% and displays
remarkable superiority over them in the BCSA security scenario of malware detection. Such results
demonstrate the outstanding effectiveness of KEENHash on large-scale program-level BCSA.
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Table 9. The performance of program clone search with different hashed lengths for KEENHash-stru.

Method mAP@100 mP@100

IoT BinaryCorp BinKit𝑁 MLWMC Avg. IoT BinaryCorp BinKit𝑁 MLWMC Avg.
KEENHash10stru 0.9596 0.6915 0.7262 0.7424 0.7799 0.9360 0.0296 0.5468 0.3961 0.4771
KEENHash12stru 0.9605 0.7191 0.7267 0.7502 0.7891 0.9360 0.0312 0.5458 0.4105 0.4809
KEENHash14stru 0.9603 0.7237 0.7270 0.7518 0.7907 0.9365 0.0318 0.5465 0.4135 0.4821
KEENHash16stru 0.9602 0.7247 0.7270 0.7519 0.7910 0.9363 0.0322 0.5467 0.4144 0.4824
KEENHash18stru 0.9604 0.7253 0.7270 0.7518 0.7911 0.9363 0.0325 0.5467 0.4150 0.4826

A Hashed Length of Feature Hashing
In this section, we introduce KEENHash-stru with different parameter settings of hashed length
for comparison. Here, we denote KEENHash with different settings as KEENHash𝑦stru where 𝑦 ∈
{10, 12, 14, 16, 18} represents the Feature Hashing size (length) of 2𝑦 . We evaluate the performance
of KEENHash𝑦stru through the task in Sec. 4.4 (the results of other tasks show a similar trend here).
The experimental results are shown in Table. 9. On average, the performance of KEENHash𝑦stru
improves in tandem with increases in the hashed length 2𝑦 . In addition, Cliff’s Delta effect size [64]
measures that the effect size between any pair of results of KEENHash𝑦stru, across the 4 datasets,
remains below 0.1, indicating a negligible difference. Although the performance increases on these
datasets are minimal, we consider that the hashed length 2𝑦 should be sufficiently large within an
appropriate range to minimize the impact of the number of functions in binaries on KEENHash-stru
for even larger-scale scenarios (e.g., 10 million binaries). Therefore, as mentioned in Sec. 3.4.1, we
set the hashed length to 216 (i.e., 𝑦 = 16).

B Similarity Evaluation for KEENHash-stru
The program embedding produced by KEENHash-stru is a bit-vector, with each element indicating
the classification of functions for representing function matching. Generally, two popular similarity
evaluation metrics are appropriate for KEENHash-stru: Hamming distance [27] and Jaccard simi-
larity [46]. In this study, we opt for the latter since the Hamming distance, quantifying absolute
differences, is more likely to lead to false positives. For instance, consider programs 𝐴, 𝐵, and 𝐶
with 10K, 4K, and 4 numbers of 1s in their bit-vectors. 𝐴 and 𝐵 are of the same class, with the only
difference being that 𝐴 is compiled with O0 while 𝐵 is compiled with O3. The hamming distance
between 𝐴 and 𝐵 is at least 6K, whereas the distance between B and C is no more than 4K + 4,
leading to 𝐵 and 𝐶 appearing more similar in the similarity comparison. While, Jaccard similarity
incorporates proportional measures (e.g., 4K and 10K are proportionally closer than 4 and 4K),
mitigating the negative effects of the absolute differences.

C Dataset in Detail
This section extends the original description of the dataset used in our experiment.
Training Dataset. Two training datasets are included in this study for ❶ the function embedding
model and ❷ the K-Means model, respectively. For ❶, to obtain a large number of matched source
and pseudo functions, we build the automatic compilation pipeline based on ArchLinux official
repositories (AOR) [12] and Arch User Repository (AUR) [13], following the same setting in jTrans
(i.e., BinaryCorp) [86]. We compile all the projects through the command makepkg. In addition,
over a period of three years, we collect open-sourced C/C++ projects from the Linux Community,
along with their corresponding compiled binaries across various architectures (e.g., x86, arm, and so
forth), ultimately amassing around 900K projects. Furthermore, the source functions (with matched
pseudo ones) causing data leakage are excluded through sha256 (Sec. 3.2.1) from the training dataset
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for the evaluation of the effectiveness of our K-Means model (Sec. 4.3) and our function embedding
model (Appendix E). The source and pseudo functions and pairs are extracted through the Function
Extraction (see Sec. 3.2.1). Eventually, we obtain 4.51M matched function pairs with an average
of 556 tokens per function as the training dataset for the function embedding model. As for ❷, to
obtain massive and diverse C/C++ source functions, we follow previous studies [77, 91] to collect
a large number of open-source C/C++ projects by crawling from Github [35] and GNU/Linux
community [39]. In total, 11,013 projects, including malicious ones (e.g., gh0st RAT malware [23]),
are obtained, containing 56M unique C/C++ source functions. A substantial source function dataset
is essential for the generalization of KEENHash-structural.
Test Dataset. The test dataset is used to evaluate the performance of our K-Means model (Sec.
4.3). Specifically, we use the binary diffing dataset in DeepBinDiff [28]. The dataset, compiled with
GCC 5.4, utilizes three popular binary sets of Coreutils [36], Diffutils [37], and Findutils [38], across
various versions (5 versions for Coreutils, 4 versions for Diffutils, and 3 versions of Findutils) and
optimization levels (O0, O1, O2, and O3). In total, there are 2,098 binaries. Moreover, the function
matching ground truth is obtained through the Function Extraction in a total of 101,289 pairs of
matched functions across 1,926 compared pairs of same-class binaries.
Repository and Query Dataset. To evaluate KEENHash on program clone search, we collect five
datasets:
▶ IoT.We collect 37,657 nonpacked C/C++ (detected with DIE [43]) IoT malware samples from
MalwareBazaar [65] across 21 malware families, spanning from January 2020 to July 2023. The
malware families are obtained from VirusTotal [82] reports through avclass [74, 75], containing
many notorious ones such as Mirai, Gafgyt, Tsunami, and so forth. Furthermore, each family
contains at least 20 samples. We randomly divide the dataset into repository and query datasets in
a 9:1 ratio and each family has at least two samples in the query.
▶ BinaryCorp. BinaryCorp [86] dataset is crafted based on AOR and AUR. Where, AOR contains
tens of thousands of diverse packages, ranging from editor, HTTP server, compiler, graphics library,
cryptographic library, and so forth. AUR contains over 77,000 packages uploaded and maintained
by users. Furthermore, ArchLinux provides a useful tool makepkg for users to build their packages
from source code. Wang et al. [86] choose the C/C++ project in the pipeline to build the datasets
across five optimization levels of O0, O1, O2, O3, and Os. In total, 9,819 source code are collected
and 45,593 distinct C/C++ binaries in x86 are generated, with 9,498 sample families. The sample
family number is lower than the project number since binaries compiled (in the same compile
environments) from different projects may have the same SHA256 hash values. We randomly divide
the dataset into repository and query in a 7.5:2.5 ratio and each family has at least one sample in
the query. Furthermore, all binaries are stripped, which is practical in real-world scenarios.
▶ BinKit. BinKit [54] dataset is crafted from 51 GNU software packages with 235 unique C source
code (i.e., sample families). The 51 GNU packages are chosen due to their popularity and accessibility
as they are real-world applications that are widely used on Linux, and their source code is publicly
available. The compiled binaries are also diverse along different optimization levels, compilers,
architectures, and obfuscations.

• Normal (BinKit𝑁 ): The normal one is compiled with 288 different compile environments
for a total of 67,680 binaries to the 51 packages. It covers 8 architectures (arm, x86, mips, and
mipseb, each available in 32 and 64 bits), 9 compilers (5 versions of GCC v{4.9.4, 5.5.0, 6.4.0,
7.3.0, 8.2.0} and 4 versions of Clang v{4.0, 5.0, 6.0, 7.0}), and 4 optimization levels (O0, O1, O2,
and O3);

• Obfuscation (BinKit𝑂 ): The obfuscation one is compiled with 4 obfuscation options in-
cluding instruction substitution (SUB), bogus control flow (BCF), control flow flattening
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(FLA), and all combined (ALL), through Obfuscator-LLVM [53] as the compiler. Where SUB
transforms fragments of assembly code to their equivalent form through predefined rules;
BCF modifies the control flow graph (CFG) of functions by adding a large number of irrelevant
basic blocks and branches; FLA changes the original CFG using a complex hierarchy of new
conditions as switches; and, ALL combines all obfuscations above. The same architectures
and 5 optimization levels (extra Os) are also covered. Therefore, a total of 37,600 binaries are
generated.

The BinKit𝑁 dataset is divided randomly into repository and query in a 9:1 ratio. 10% of the
samples are randomly selected from the BinKit𝑂 dataset as the query to maintain experimental
consistency in Sec. 4.5 and 4.6. All binaries are stripped.
▶ MLWMC. MLWMC [25] is an open PE 32 real-world malware dataset collected through Virus-
Total from August 2021 to March 2022. It contains 67,000 malware samples across 670 malware
families obtained from VirusTotal reports through avclass where each family contains 100 malware
samples. These families belong to 13 threat categories: 36% (282) of the families are classified as
grayware, 15% (120) as downloaders, 11% (87) as worms, 10% (78) as backdoors, 5% (41) as viruses,
and the remaining 23% (62) includes ransomware, rogueware, spyware, miners, hacking tools,
clickers, and dialers. In this study, we consider the 49,820 nonpacked C/C++ samples, belonging
to a total of 615 malware families where each family contains at least 20 samples. Moreover, we
divide the dataset in the same way as IoT.

D Runtime Overhead
Here, we count the average time spent, across our collected 5 datasets, on each step of KEENHash
for hashing a binary into corresponding program embeddings. In Function Extraction, the main
time cost is in the decompilation process, which takes around 1 minute to decompile (1 core) one
binary on average (at most 43 minutes for a binary in the size of 220MB). In Function Embedding
Generation, for one binary (200 functions on average), it takes about 0.06 seconds on average (at
most 12 seconds for binaries containing around 40K functions). In Program Embedding Generation,
for one binary, it takes 0.3 and 0.1 seconds on average for KEENHash-stru (at most 35 seconds) and
KEENHash-sem (at most 9 seconds), respectively. It is notable that these steps can be completed
offline in large-scale scenarios for BCSA such as building a large-scale repository (Sec. 2).

E Function Embedding Discussion
As our function embedding model is the foundation of KEENHash, its effectiveness and ability to
generalize in generating program embeddings are essential. Here, we discuss it with two state-of-
the-art publically available models jTrans [86] and CLAP [83] on binary functions. We only focus
on binary functions since the two models are only available on assembly code (they do not support
source functions) and the performance between source and pseudo ones, for function matching,
are already evaluated in Sec. 4.3. Furthermore, we employ the test dataset of BinaryCorp [86] for
the experiment which aligns with the one evaluated in jTrans and CLAP. The test dataset contains
2,911,846 functions across 9,351 binaries from 1,974 source code with 5 optimization levels. On
average, 1 source function (i.e., class) corresponds to 5.6 binary functions.
Function Embedding Comparing.We perform the function clone search for evaluation where the
subject changes from programs to pseudo (binary) functions (Sec. 2.1). The test dataset is randomly
divided into repository and query datasets in a 7.5:2.5 ratio where each class (if the class size > 1)
has functions in both repository and query. The metrics include mAP@𝑘 and mP@𝑘 . The results
are shown in Table 10. Our function embedding model (i.e., KEENHash) surpasses both jTrans and
CLAP in terms of both mAP@𝑘 and mP@𝑘 metrics across 𝑘 ∈ {1, 10, 50, 100} on such a large and
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Table 10. The performance of function clone search of KEENHash.

Method Metric Top-1 Top-10 Top-50 Top-100

jTrans mAP@𝑘 0.2841 0.3065 0.2846 0.2714
mP@𝑘 0.2841 0.1464 0.0640 0.0457

CLAP mAP@𝑘 0.6423 0.6567 0.6288 0.6186
mP@𝑘 0.6423 0.3129 0.1015 0.0648

KEENHash mAP@𝑘 0.7244 0.7422 0.7202 0.7116
mP@𝑘 0.7244 0.3261 0.1162 0.0764

Table 11. Program clone search across function embedding models.

Method mAP@100 mP@100

jTrans-Mean Pooling 0.6321 0.0293
CLAP-Mean Pooling 0.8340 0.0333
KEENHash-Mean Pooling 0.8445 0.0349

diverse dataset. The results demonstrate that our model can retrieve more same-class functions that
are also ranked higher compared to jTrans and CLAP, underscoring the effective discriminative
capacity of our function embedding model in generating pseudo function embeddings. For instance,
our model achieves 0.7116 and 0.0764 in mAP@100 and mP@100, outperforming jTrans by 44.02%
and 3.07%, and CLAP by 9.30% and 1.16%.
Program Embedding Ablation Study. We leverage the function embeddings produced through
KEENHash, jTrans, and CLAP to generate respective program embeddings for further demonstrat-
ing the effectiveness of different function embeddings to program embeddings. Specifically, to
avoid biases, we employ Mean Pooling (see Sec. 4.2) as the program embedding generation ap-
proaches for conducting the ablation study. KEENHash-stru and KEENHash-sem-based approaches
are excluded since jTrans and CLAP do not support aligning both source and binary functions
within the same space, and they model binary functions based on assembly code, which differs from
that of KEENHash. We perform the program clone search where the test dataset of BinaryCorp is
randomly divided into repository and query datasets in an 8:2 ratio. Each query binary has at least
one same-class sample in the repository. The metrics include mAP@100 and mP@100. Table 11
reveals that the Mean Pooling based on KEENHash outperforms those based on jTrans and CLAP.
For example, KEENHash-Mean Pooling achieves 0.8445 in mAP@100, outperforming jTrans by
21.24%, and CLAP by 1.05%. This outcome indicates that a more effective function embedding model
can potentially enhance the effectiveness of generated program embeddings. Furthermore, our
function embedding model encodes source and pseudo functions into the same space, supporting
both KEENHash-stru and sem methods where the former is better in code obfuscation scenarios
(Sec. 4.5), while the latter is more effective in huge code reuse ones (Sec. 4.4).

F KEENHash Discussion
ComparisonwithDifferent Sizes of LLMs.Asmentioned in Sec. 3.3, we fine-tune the Pythia-410M
to have our function embedding model. However, LLMs with larger model sizes are generally ex-
pected to improve their comprehension. Here, we demonstrate that Pythia-410M achieves the best
balance between performance and resource consumption. Therefore, we select it for our paper. The
training, validation, and test datasets are split from the one introduced in Sec 4.1, with a ratio of 8:1:1.
The various pre-trained base LLMs for fine-tuning, across different sizes, are selected with their
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Table 12. Performance of fine-tuned function embedding models across different base LLMs with different
sizes.

Fine-tuned Base LLM MRR Recall@1 Recall@5

StarCoder-1B [18] 0.8588 0.7932 0.9291
Pythia-1B [30] 0.8572 0.7975 0.9286

Pythia-410M [31] 0.8523 0.7915 0.9267
Pythia-160M [29] 0.7958 0.7257 0.8793
Jina-137M [8] 0.7723 0.6947 0.8651

popularity and can be found in Table 12.We use pseudo functions to retrieve source functions to eval-
uate the quality of both modalities. The evaluation metrics include MRR, Recall@1, and Recall@5,
following the ones used in previous works [83, 86]. As shown in Table 12, Pythia-410M has a similar
performance compared with Pythia-1B [30] and StarCoder-1B [18]. The larger-scale LLMs have
almost no performance improvement, while they will cost more resources including: computing
consumption, time, and video memory. Compared with Pythia-160M [29] and Jina-137M [8],
Pythia-410M significantly outperforms both of them. Therefore, we consider Pythia-410M to be
the optimal among these LLMs, due to its performance and resource consumption.
Combination of KEENHash-stru and sem. KEENHash-stru and sem represent a binary program
from two different perspectives (Sec. 3.4), each with its own advantages (Sec. 4.4 and 4.5). Combining
their respective advantages may further enhance the performance and robustness of KEENHash.
A potentially direct strategy is to use hybrid search [2]. It conducts respective KEENHash-stru
and sem similarity evaluations simultaneously, and merges and reranks/reweights the two sets of
(paired) results based on normalized similarity scores. We leverage hybrid search on KEENHash
for program clone search against the IoT dataset, with the same settings in Sec. 4.4. The importance
(i.e., weight) of KEENHash-stru and sem is set to 0.5 each. Our experimental results show that the
hybrid search achieves 0.9384 mAP@100 and 0.9300 mP@100. The direct combining strategy does
not exhibit significant improvement compared to KEENHash-stru and sem (see Table 4). We plan
to explore how to effectively combine these two types of program embeddings in the future.
Fragility of NoS. KEENHash-sem leverages NoS feature (see Sec. 3.4.2) as one of the factors for
weighting function embeddings and performs well shown in our experiments. However, NoS is
expected to be fragile against the string libcall expansion with known small lengths [1, 3]. Thus,
it may vary with compilation options (e.g., O0 vs. O3), affecting weighting results. In addition,
real-world malware also usually obfuscates, hides, and avoids string literals in functions (e.g.,
tshd [5] and Zygug [6] in MLWMC [25]), which can render NoS less effective. To mitigate this issue,
we also introduce the LoC feature as another factor to enhance the robustness of KEENHash-sem
(see Table 4).
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